INTRODUCTION

Valved Holding Chambers (VHCs) are recommended by the European Medicines Agency (EMA) guidelines to be used with pressurized metered dose inhalers (pMDI) as a delivery system. VHCs are designed to improve medication delivery, reduce oropharyngeal deposition of medication by substantially changing the aerodynamic particle size distribution (APSD). This may influence the therapeutically beneficial fine particles mass (< ca. 5 µm aerodynamic diameter) that reaches the Airways of the lungs.

In 2009 the significant role of the VHC in drug delivery was acknowledged when the European Medicines Agency (EMA) recommended that development of a pMDI should include the testing of at least 1 VHC. It was also recommended that if a VHC was to be substituted by an alternative VHC, appropriate pharmacopoeial methods must be presented that take into account clinically relevant factors, i.e., delay between pMDI actuation and sampling.

Statistical Approach to Demonstrate VHC Equivalence

A simple and widely used approach to test for statistical equivalence is the two one-sided test (TOST). A traditional t-test is inappropriate in this instance because it tests a hypothesis of difference/no difference rather than a hypothesis of equivalence/non-equivalence. Confirmation that two products are not significantly different does not necessarily mean that they are equivalent.

Unlike the traditional t-test, TOST appropriately penalizes poor precision and/or small n-values and places the burden on the analyst to prove that the data sets are equivalent. Additionally, the use of subjective terms such as “comparable” or “similar” are sometimes used in relation to equivalence, which are unfounded from a scientific or statistical perspective.

The EMA guideline requires the comparison to be performed by justified groupings of stages and recommends at least 4 groups based upon within-group similarity of regional deposition pattern (e.g., mouth/throat area, upper and lower parts of the lungs).

Anderson Cascade Impactor Stage Groupings and Limits Justification

The EMA guideline requires the comparison to be performed by justified groupings of stages and recommends at least 4 groups based upon within-group similarity of regional deposition pattern (e.g., mouth/throat area, upper and lower parts of the lungs).

MATERIALS AND METHODS

The following VHCs, each with mouthpiece as patient interface (n=20 devices/group) were evaluated:

<table>
<thead>
<tr>
<th>VHC</th>
<th>Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference VHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test VHCs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AeroChamber Plus VHC</td>
<td>VHC, Trudell Medical International</td>
<td></td>
</tr>
<tr>
<td>Flow-Vu VHC, AeroChamber Plus Flow-Vu</td>
<td>Anti-static VHC, Trudell Medical International</td>
<td></td>
</tr>
<tr>
<td>Space Chamber</td>
<td>Anti-static VHC, Trudell Medical International</td>
<td></td>
</tr>
<tr>
<td>OptiChamber Mr.</td>
<td>Anti-static VHC, Trudell Medical International</td>
<td></td>
</tr>
<tr>
<td>Compact Space Chamber Plus</td>
<td>Anti-static VHC, Medical Developments</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

Pre-treatment for test VHC: Scaled device in lukewarm water/liquid detergent solution as per manufacturer instructions.

Pre-treatment for all test VHCs not required; tested out-of-package as per manufacturer instructions.

A randomized testing matrix for all VHCs (n=100 in total) was created to determine the testing order and each VHC paired with a randomly chosen pMDI (Ventolin®-HFA, single Lot) and each canister primed before use in accordance with patient instructions.

For each test, 5 actuations of medication were delivered to the VHC on test and APSD measurements made by Andersen 8-stage cascade impactor with a 2-s delay interval between actuation and sampling.

Statistical equivalence was determined using a two-one sided test (TOST) approach and a 90% confidence interval and Minitab® 17.1.0 (Minitab, State College PA, USA) software was employed for statistical analysis.

CONCLUSIONS

The interchange of VHCs has both safety and efficacy implications unless otherwise proven as equivalent through in vitro and/or in vivo data.

This in vitro equivalence study was performed using a recognized analytical test methodology and an appropriate statistical test for equivalence, as opposed to incorrectly testing a hypothesis of difference/no difference or making non-statistically-based subjective judgments.

When using the AeroChamber Plus VHC as the reference VHC, results showed that only one TEST VHC, the AeroChamber Plus Flow-Vu VHC, was statistically equivalent to it.

All other test VHCs did not meet the acceptance criteria for equivalence in any of the four defined groupings.

This finding may not be so surprising, given that the two equivalent chambers are of the same size and design, other than anti-static properties out-of-package.

This study highlights the impact of differences in VHC design (size, shape, valves, etc.) upon drug delivery, and therefore the potential risk of interchanging VHCs without understanding the impact of doing so.